Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 20 2019 11:53:08
%S 1,1,2,5,7,15,21,39,58,90,142,218,325,465,695,948,1411,1977,2883,3940,
%T 5415,7422,10126,14091,18947,25666,34282,45890,60710,82211,108510,
%U 142960,185271,240595,315158,409231,531967,688689,880997,1126451,1447754,1849743
%N Sum over all partitions of n into distinct parts of the LCM of the parts.
%H Alois P. Heinz, <a href="/A306956/b306956.txt">Table of n, a(n) for n = 0..200</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%F a(n) mod 2 = A040051(n).
%F a(n) is even <=> n in { A001560 }.
%F a(n) is odd <=> n in { A052002 }.
%p b:= proc(n, i, r) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0,
%p r, b(n, i-1, r) +b(n-i, min(i-1, n-i), ilcm(i, r))))
%p end:
%p a:= n-> b(n$2, 1):
%p seq(a(n), n=0..44);
%t b[n_, i_, r_] := b[n, i, r] = If[i(i+1)/2 < n, 0, If[n == 0, r, b[n, i-1, r] + b[n-i, Min[i-1, n-i], LCM[i, r]]]];
%t a[n_] := b[n, n, 1];
%t Table[a[n], {n, 0, 44}] (* _Jean-François Alcover_, Mar 20 2019, translated from Maple *)
%Y Cf. A000009, A000041, A001560, A040051, A052002, A181844, A319301.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Mar 17 2019