login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306940
Expansion of 1/((1 - x)^6 + x^6).
2
1, 6, 21, 56, 126, 252, 461, 780, 1209, 1638, 1638, 0, -6187, -23238, -63783, -151316, -326382, -652764, -1217483, -2107560, -3322995, -4538430, -4538430, 0, 16942381, 63239286, 172791861, 408855776, 880983606, 1761967212, 3287837741, 5694626340
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/6)} (-1)^k*binomial(n+5,6*k+5).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - 2*a(n-6) for n > 5.
MATHEMATICA
CoefficientList[Series[1/((1 - x)^6 + x^6), {x, 0, 31}], x] (* Amiram Eldar, May 25 2021 *)
LinearRecurrence[{6, -15, 20, -15, 6, -2}, {1, 6, 21, 56, 126, 252}, 40] (* Harvey P. Dale, May 31 2021 *)
PROG
(PARI) {a(n) = sum(k=0, n\6, (-1)^k*binomial(n+5, 6*k+5))}
(PARI) N=66; x='x+O('x^N); Vec(1/((1-x)^6+x^6))
CROSSREFS
Column 6 of A306914.
Sequence in context: A015640 A138780 A108907 * A120478 A008488 A023031
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Mar 17 2019
STATUS
approved