Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 15 2019 02:58:06
%S 11,13,19,17,23,17,19,31,19,13,37,41,71,23,13,41,43,73,29,23,23,53,47,
%T 79,37,73,31,17,59,53,97,59,79,43,37,17,61,59,103,71,89,107,53,19,31,
%U 67,67,149,97,179,127,59,47,43,13,71,71,151,103,223,131,61,61
%N A(n, k) is the k-th prime p > 10 where a string of exactly n zeros can be inserted somewhere into the decimal expansion such that the resulting number is also prime; square array, read by antidiagonals, downwards.
%e Array starts as follows:
%e 11, 13, 17, 19, 37, 41, 53, 59, 61, 67, 71, 79, 89, 97
%e 19, 23, 31, 41, 43, 47, 53, 59, 67, 71, 89, 97, 107, 109
%e 17, 19, 71, 73, 79, 97, 103, 149, 151, 157, 173, 181, 223, 229
%e 13, 23, 29, 37, 59, 71, 97, 103, 127, 137, 139, 157, 181, 199
%e 13, 23, 73, 79, 89, 179, 223, 233, 239, 241, 263, 269, 277, 281
%e 23, 31, 43, 107, 127, 131, 137, 139, 149, 151, 163, 173, 179, 181
%e 17, 37, 53, 59, 61, 67, 71, 107, 109, 151, 179, 193, 197, 211
%e 17, 19, 47, 61, 67, 71, 157, 181, 197, 227, 313, 347, 353, 367
%e 31, 43, 103, 113, 127, 137, 149, 157, 163, 173, 191, 241, 257, 277
%e 13, 79, 113, 139, 163, 191, 293, 313, 349, 397, 433, 439, 443, 449
%e 23, 79, 89, 137, 149, 151, 163, 181, 199, 229, 239, 241, 277, 311
%e 41, 79, 131, 157, 167, 197, 199, 227, 229, 233, 241, 347, 349, 359
%e 137, 167, 191, 197, 227, 277, 281, 313, 337, 353, 389, 421, 439, 449
%e Antidiagonals as a triangular array:
%e 11
%e 13, 19
%e 17, 23, 17
%e 19, 31, 19, 13
%e 37, 41, 71, 23, 13
%e 41, 43, 73, 29, 23, 23
%e 53, 47, 79, 37, 73, 31, 17
%e 59, 53, 97, 59, 79, 43, 37, 17
%e 61, 59, 103, 71, 89, 107, 53, 19, 31
%e 67, 67, 149, 97, 179, 127, 59, 47, 43, 13
%e 71, 71, 151, 103, 223, 131, 61, 61, 103, 79, 23
%o (PARI) insert(n, len, pos) = my(d=digits(n), v=[], w=[]); for(y=1, pos, v=concat(v, d[y])); v=concat(v, vector(len)); for(z=pos+1, #d, v=concat(v, d[z])); subst(Pol(v), x, 10)
%o row(n, terms) = my(i=0); if(terms <= 0, print1(""), forprime(p=10, , for(k=1, #digits(p)-1, my(zins=insert(p, n, k)); if(ispseudoprime(zins), print1(p, ", "); i++; break)); if(i>=terms, print(""); break)))
%o array(rows, cols) = for(x=1, rows-1, row(x, cols))
%o array(12, 10) \\ Print initial 12 rows and 10 columns of array
%Y Cf. A215417, A306920. Row 1 is A164329.
%K nonn,tabl,base
%O 1,1
%A _Felix Fröhlich_, Mar 16 2019