Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #36 Apr 08 2019 03:45:29
%S 1,1,0,1,2,0,1,3,2,0,1,4,6,0,0,1,5,10,9,-4,0,1,6,15,20,9,-8,0,1,7,21,
%T 35,34,0,-8,0,1,8,28,56,70,48,-27,0,0,1,9,36,84,126,125,48,-81,16,0,1,
%U 10,45,120,210,252,200,0,-162,32,0
%N Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k+x^k).
%H Seiichi Manyama, <a href="/A306914/b306914.txt">Antidiagonals n = 0..139, flattened</a>
%F A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n+k-1,k*j+k-1).
%F A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+k-1,k*j+k-1) * binomial(n-i+k-1,k*j+k-1). - _Seiichi Manyama_, Apr 07 2019
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 0, 2, 3, 4, 5, 6, 7, 8, ...
%e 0, 2, 6, 10, 15, 21, 28, 36, ...
%e 0, 0, 9, 20, 35, 56, 84, 120, ...
%e 0, -4, 9, 34, 70, 126, 210, 330, ...
%e 0, -8, 0, 48, 125, 252, 462, 792, ...
%e 0, -8, -27, 48, 200, 461, 924, 1716, ...
%e 0, 0, -81, 0, 275, 780, 1715, 3432, ...
%e 0, 16, -162, -164, 275, 1209, 2989, 6434, ...
%t A[n_, k_] := SeriesCoefficient[1/((1-x)^k + x^k), {x, 0, n}];
%t Table[A[n-k+1, k], {n, 0, 11}, {k, n+1, 1, -1}] // Flatten (* _Jean-François Alcover_, Mar 20 2019 *)
%Y Columns 1-9 give A000007, A099087, A057083, A099589(n+3), A289389(n+4), A306940, (-1)^n * A049018(n), A306941, A306942.
%Y Cf. A039912, A306913, A306915, A307039, A307079, A307394.
%K sign,tabl,look
%O 0,5
%A _Seiichi Manyama_, Mar 16 2019