Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Jun 21 2021 03:01:37
%S 1,1,2,1,1,4,1,1,2,8,1,1,1,4,16,1,1,1,2,8,32,1,1,1,1,5,16,64,1,1,1,1,
%T 2,11,32,128,1,1,1,1,1,6,22,64,256,1,1,1,1,1,2,16,43,128,512,1,1,1,1,
%U 1,1,7,36,85,256,1024,1,1,1,1,1,1,2,22,72,170,512,2048
%N Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^k).
%H Seiichi Manyama, <a href="/A306846/b306846.txt">Antidiagonals n = 0..139, flattened</a>
%F A(n,k) = Sum_{j=0..floor(n/k)} binomial(n,k*j).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 2, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 4, 2, 1, 1, 1, 1, 1, 1, 1, ...
%e 8, 4, 2, 1, 1, 1, 1, 1, 1, ...
%e 16, 8, 5, 2, 1, 1, 1, 1, 1, ...
%e 32, 16, 11, 6, 2, 1, 1, 1, 1, ...
%e 64, 32, 22, 16, 7, 2, 1, 1, 1, ...
%e 128, 64, 43, 36, 22, 8, 2, 1, 1, ...
%e 256, 128, 85, 72, 57, 29, 9, 2, 1, ...
%t T[n_, k_] := Sum[Binomial[n, k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 11}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Jun 21 2021 *)
%Y Columns 1-9 give A000079, A011782, A024493, A038503, A139398, A306847, A306852, A306859, A306860.
%Y Cf. A306680.
%K nonn,tabl
%O 0,3
%A _Seiichi Manyama_, Mar 13 2019