login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Square array whose entry A(n,k) is the number of endofunctions on a set of size n with preimage constraint {0,1,...,k}, for n >= 0, k >= 0, read by descending antidiagonals.
8

%I #43 Jun 28 2023 09:50:47

%S 1,1,0,1,1,0,1,1,2,0,1,1,4,6,0,1,1,4,24,24,0,1,1,4,27,204,120,0,1,1,4,

%T 27,252,2220,720,0,1,1,4,27,256,3020,29520,5040,0,1,1,4,27,256,3120,

%U 44220,463680,40320,0,1,1,4,27,256,3125,46470,765030,8401680,362880,0

%N Square array whose entry A(n,k) is the number of endofunctions on a set of size n with preimage constraint {0,1,...,k}, for n >= 0, k >= 0, read by descending antidiagonals.

%C A preimage constraint is a set of nonnegative integers such that the size of the inverse image of any element is one of the values in that set.

%C Thus, A(n,k) is the number of endofunctions on a set of size n such that each preimage has at most k entries. Equivalently, A(n,k) is the number of n-letter words from an n-letter alphabet such that no letter appears more than k times.

%H Alois P. Heinz, <a href="/A306800/b306800.txt">Antidiagonals n = 0..140, flattened</a>

%H B. Otto, <a href="https://arxiv.org/abs/1903.00542">Coalescence under Preimage Constraints</a>, arXiv:1903.00542 [math.CO], 2019, Corollaries 5.6 and 7.8.

%F A(n,k) = n! * [x^n] e_k(x)^n, where e_k(x) is the truncated exponential 1 + x + x^2/2! + ... + x^k/k!. When k>1, the link above yields explicit constants c_k, r_k so that the columns are asymptotically c_k * n^(-1/2) * r_k^-n. Stirling's approximation gives column k=1, and column k=0 is 0.

%F A(n,k) = Sum_{j=1..min(k,n)} A019575(n,j) for n>=1. - _Alois P. Heinz_, Jun 28 2023

%e Array begins:

%e 1 1 1 1 1 ...

%e 0 1 1 1 1 ...

%e 0 2 4 4 4 ...

%e 0 6 24 27 27 ...

%e 0 24 204 252 256 ...

%e 0 120 2220 3020 3120 ...

%e 0 720 29520 44220 46470 ...

%e ...

%p b:= proc(n, i, k) option remember; `if`(n=0 and i=0, 1, `if`(i<1, 0,

%p add(b(n-j, i-1, k)*binomial(n, j), j=0..min(k, n))))

%p end:

%p A:= (n, k)-> b(n$2, k):

%p seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Apr 05 2019

%t b[n_, i_, k_] := b[n, i, k] = If[n==0 && i==0, 1, If[i<1, 0, Sum[b[n-j, i-1, k] Binomial[n, j], {j, 0, Min[k, n]}]]];

%t A[n_, k_] := b[n, n, k];

%t Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, May 29 2019, after _Alois P. Heinz_ *)

%o (Python)

%o # print first num_entries entries in column k

%o import math, sympy; x=sympy.symbols('x')

%o k=5; num_entries = 64

%o P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [1]; curr_pow = 1

%o for term in range(1,num_entries):

%o ...curr_pow=(curr_pow*eP).expand()

%o ...r.append(curr_pow.coeff(x**term)*math.factorial(term))

%o print(r)

%Y Columns 0-9: A000007, A000142, A012244, A239368, A324804, A324805, A324806, A324807, A324808, A324809.

%Y A(n,n) gives A000312.

%Y Similar array for preimage condition {i>=0 | i!=k}: A245413.

%Y Number of functions with preimage condition given by the even nonnegative integers: A209289.

%Y Sum over all k of the number of functions with preimage condition {0,k}: A231812.

%Y Cf. A019575.

%K easy,nonn,tabl

%O 0,9

%A _Benjamin Otto_, Mar 10 2019

%E Offset changed to 0 by _Alois P. Heinz_, Jun 28 2023