

A306788


Numbers k such that all digits in k are different and for each digit d it is true that k = d (mod sum of digits(k)  d).


0



287, 375, 485, 643, 735, 739, 827, 1276, 1453, 2531, 2537, 3187, 3251, 3540, 5413, 5783, 6138, 6315, 6571, 9381, 9817, 14053, 20176, 23961, 30618, 47908, 63015, 69324, 71842, 78142, 91826, 92361, 98301, 415826, 415829, 693024, 910824, 5481029
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The sequence is complete.


LINKS



EXAMPLE

287 is in the sequence, because 287 = 7 (mod 2 + 8), 287 = 8 (mod 2 + 7) and 287 = 2 (mod 8 + 7).


MATHEMATICA

Select[Range[10^7], Function[{n, d, s}, And[Length@ Union@ d == IntegerLength@ n, AllTrue[d, If[# == 0, 0, Mod[n, #]] &[s  #] == # &]]] @@ {#1, #2, Total@ #2} & @@ {#, IntegerDigits@ #} &] (* Michael De Vlieger, Mar 11 2019 *)


CROSSREFS



KEYWORD

nonn,base,fini,full


AUTHOR



STATUS

approved



