login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A306607(k) = 0.
1

%I #30 Mar 20 2022 02:18:37

%S 0,3,7,9,15,31,33,45,51,63,127,129,153,165,189,195,219,231,255,411,

%T 435,511,513,561,585,633,645,693,717,765,771,819,843,891,903,951,975,

%U 1023,2047,2049,2145,2193,2289,2313,2409,2457,2553,2565,2661,2709,2805,2829,2925,2973,3069,3075,3171,3219

%N Numbers k such that A306607(k) = 0.

%C The first even terms are 0, 68690167808, 68690561024, 68690757632, 68691150848, 68698560512, 68698953728, 68699150336, 68699543552, 68715331584, 68715724800, 68715921408, 68716314624. - _Robert Israel_, Mar 10 2019

%H Robert Israel, <a href="/A306740/b306740.txt">Table of n, a(n) for n = 1..10000</a>

%p f:= proc(n) local L;

%p L:= convert(n, base, 2);

%p while nops(L) > 1 do

%p L:= L[2..-1]-L[1..-2]

%p od;

%p op(L)

%p end proc:

%p select(f=0, [$0..10000]);

%t seqQ[n_] := NestWhile[Differences, Reverse[IntegerDigits[n, 2]], Length[#]>1&] == {0}; Select[Range[0, 3000], seqQ] (* _Amiram Eldar_, Mar 08 2019 *)

%Y Cf. A306607. Includes A048701.

%K nonn,base,look

%O 1,2

%A _Robert Israel_, Mar 07 2019