login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [2n] having at least one index i with |p(i)-i| = n.
3

%I #10 Apr 02 2021 14:05:19

%S 0,1,15,455,25487,2293839,302786759,55107190151,13225725636255,

%T 4047072044694047,1537887376983737879,710503968166486900119,

%U 392198190427900768865711,254928823778135499762712175,192726190776270437820610404327,167671785975355280903931051764519

%N Number of permutations p of [2n] having at least one index i with |p(i)-i| = n.

%H Alois P. Heinz, <a href="/A306675/b306675.txt">Table of n, a(n) for n = 0..224</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%F a(n) = A306506(2n,n).

%F a(n) = (2n)! - A306535(n).

%p b:= proc(n, k) b(n, k):= `if`(k=0, n!, b(n+1, k-1) -b(n, k-1)) end:

%p a:= n-> (2*n)! -b(0, 2*n):

%p seq(a(n), n=0..16);

%t b[n_, k_] := b[n, k] = If[k == 0, n!, b[n + 1, k - 1] - b[n, k - 1]];

%t a[n_] := (2n)! - b[0, 2n];

%t a /@ Range[0, 16] (* _Jean-François Alcover_, Apr 02 2021, after _Alois P. Heinz_ *)

%Y Cf. A306506, A306535.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Mar 04 2019