login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/(Sum_{j>=0} (j!)^k * x^j).
2

%I #19 Mar 05 2019 01:53:38

%S 1,1,-1,1,-1,0,1,-1,-1,0,1,-1,-3,-3,0,1,-1,-7,-29,-13,0,1,-1,-15,-201,

%T -499,-71,0,1,-1,-31,-1265,-13351,-13101,-461,0,1,-1,-63,-7713,

%U -328975,-1697705,-486131,-3447,0,1,-1,-127,-46529,-7946143,-206659569,-369575303,-24266797,-29093,0

%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/(Sum_{j>=0} (j!)^k * x^j).

%H Seiichi Manyama, <a href="/A306629/b306629.txt">Antidiagonals n = 0..59, flattened</a>

%F A(0,k) = 1 and A(n,k) = -Sum_{j=1..n} (j!)^k * A(n-j,k) for n > 0.

%e Square array begins:

%e 1, 1, 1, 1, 1, ...

%e -1, -1, -1, -1, -1, ...

%e 0, -1, -3, -7, -15, ...

%e 0, -3, -29, -201, -1265, ...

%e 0, -13, -499, -13351, -328975, ...

%e 0, -71, -13101, -1697705, -206659569, ...

%e 0, -461, -486131, -369575303, -268312660751, ...

%Y Columns 1-3 give A167894, A113871, A316862.

%Y Rows 0-2 give A000012, (-1)*A000012, (-1)*A000225.

%Y Main diagonal gives A306630.

%K sign,tabl

%O 0,13

%A _Seiichi Manyama_, Mar 02 2019