login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306585
Start with n and find the LCM of n and A140635(n), and continue until a number m is reached such that A140635(m) = m.
1
1, 2, 6, 4, 120, 6, 840, 24, 36, 120, 83160, 12, 1081080, 840, 120, 16, 294053760, 36, 5587021440, 60, 840, 83160, 128501493120, 24, 900, 1081080, 7560, 2520, 93163582512000, 120, 2888071057872000, 10080, 83160, 294053760, 840, 36, 106858629141264000, 5587021440, 1081080, 120, 4381203794791824000
OFFSET
1,2
COMMENTS
a(n) = n is a subsequence of minimal numbers A007416, i.e., when A140635(n) = n. It appears that p_n > log_2(sigma_0(a(p_n))) for all primes p_n, and that a(p_n) form an increasing subsequence satisfying a(k) < a(p_n) for all k < p_n. - Hartmut F. W. Hoft, Mar 14 2023
LINKS
EXAMPLE
a(5) = 120 because:
A140635(5) = 2 and LCM of 5 and 2 is 10,
A140635(10) = 6 and LCM of 10 and 6 is 30,
A140635(30) = 24 and LCM of 30 and 24 is 120,
A140635(120) = 120 so a(5) = 120.
From Hartmut F. W. Hoft, Mar 14 2023: (Start)
Table of iteration steps starting at n and ending with fixed point a(n):
1 ...
2 ...
3 6 ...
4 ...
5 10 30 120 ...
6 6 ...
7 14 42 168 840 ...
8 24 ...
9 36 ...
10 30 120 ...
11 22 66 264 1320 9240 83160 ...
12 ...
13 26 78 312 1560 10920 98280 1081080 ...
14 42 168 840 ...
15 30 120 ...
16 ...
... (End)
MATHEMATICA
(* a005179[ ] based on the function by Vaclav Kotesovec in A005179 *)
mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m<n, {}, {{n}}];
mp[n_, m_] := Join@@Table[Map[Prepend[#, d]&, mp[n/d, d]], {d, Select[Rest[Divisors[n]], #<=m&]}]; mp[n_] := mp[n, n];
a005179[n_] := Module[{mulpar}, mulpar=mp[n]-1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]]]
a306585[n_] := FixedPoint[LCM[#, a005179[DivisorSigma[0, #]]]&, n]
Map[a306585, Range[37]] (* Hartmut F. W. Hoft, Mar 14 2023 *)
PROG
(PARI)
s(n) = my(nd=numdiv(n)); for(k=1, n, if(numdiv(k) == nd, return(k))); \\ A140635
a(n) = my(m=n, t=s(n)); while(1, m=lcm(m, t); t=s(m); if(m==t, return(m))); \\ Daniel Suteu, Feb 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
J. Lowell, Feb 25 2019
EXTENSIONS
a(13)-a(37) from Rémy Sigrist, Feb 25 2019
Terms a(38) and beyond from Hartmut F. W. Hoft, Mar 14 2023
STATUS
approved