login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [2n+2] such that min_{j=1..2n+2} |p(j)-j| = n;
2

%I #12 Feb 24 2019 15:34:32

%S 1,8,28,111,435,1707,6723,26571,105315,418347,1664643,6632331,

%T 26450595,105566187,421556163,1684098891,6730018275,26900941227,

%U 107546369283,430013290251,1719536600355,6876596719467,27501737832003,109993004190411,439930175348835

%N Number of permutations p of [2n+2] such that min_{j=1..2n+2} |p(j)-j| = n;

%H Alois P. Heinz, <a href="/A306545/b306545.txt">Table of n, a(n) for n = 0..1660</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-19,12).

%F G.f.: (17*x^4-27*x^3+17*x^2-1)/(12*x^3-19*x^2+8*x-1).

%F a(n) = A299789(2n+2,n).

%e a(1) = 8: 2143, 2341, 2413, 3142, 3421, 4123, 4312, 4321.

%Y Cf. A299789.

%K nonn,easy

%O 0,2

%A _Alois P. Heinz_, Feb 22 2019