%I #6 Feb 22 2019 05:17:11
%S 1,1,4,1,3,9,1,2,5,16,1,2,3,8,25,1,2,3,5,10,36,1,2,3,4,6,14,49,1,2,3,
%T 4,5,7,16,64,1,2,3,4,5,6,8,20,81,1,2,3,4,5,6,7,10,23,100,1,2,3,4,5,6,
%U 7,9,12,27,121,1,2,3,4,5,6,7,8,10,13,29,144,1,2,3,4,5,6,7,8,9,11,14,35,169
%N Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=1..n} floor(n/j^k).
%F G.f. of column k (for k > 0): (1/(1 - x)) * Sum_{j>=1} x^(j^k)/(1 - x^(j^k)).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 4, 3, 2, 2, 2, 2, ...
%e 9, 5, 3, 3, 3, 3, ...
%e 16, 8, 5, 4, 4, 4, ...
%e 25, 10, 6, 5, 5, 5, ...
%e 36, 14, 7, 6, 6, 6, ...
%t Table[Function[k, Sum[Floor[n/j^k], {j, 1, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
%Y Columns k=0..4 give A000290, A006218, A013936, A013937, A013938.
%Y Cf. A306534.
%K nonn,tabl
%O 1,3
%A _Ilya Gutkovskiy_, Feb 22 2019