login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{0<=i<j<k<=n} (i+j+k)!/(i!*j!*k!).
2

%I #30 May 17 2019 02:39:13

%S 0,0,3,77,1777,41088,964199,22962721,553886872,13504654074,

%T 332253097450,8237141855085,205552200503455,5158397884289338,

%U 130087682458168777,3294763277704155587,83764781257030939439,2136808562574516060202,54674217200832983666877

%N a(n) = Sum_{0<=i<j<k<=n} (i+j+k)!/(i!*j!*k!).

%H Robert Israel, <a href="/A306432/b306432.txt">Table of n, a(n) for n = 0..700</a>

%F a(n) ~ 3^(3*n + 7/2) / (832*Pi*n). - _Vaclav Kotesovec_, Apr 05 2019

%p g:= proc(n) local i,j;

%p add(add((i+j+n)!/(i!*j!*n!),j=i+1..n-1),i=0..n-2)

%p end proc:

%p ListTools:-PartialSums(map(g,[$0..30])); # _Robert Israel_, May 16 2019

%t Table[Sum[Sum[Sum[(i + j + k)!/(i!*j!*k!), {i, 0, j-1}], {j, 0, k-1}], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Apr 05 2019 *)

%o (PARI) {a(n) = sum(i=0, n, sum(j=i+1, n, sum(k=j+1, n, (i+j+k)!/(i!*j!*k!))))}

%Y Cf. A057552, A307352.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Apr 05 2019