Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Aug 30 2019 21:46:36
%S 1,1,1,1,4,11,32,99,326,1123,4064,15291,59924,242945,1019584,4409233,
%T 19648674,89938705,422744384,2035739041,10039057524,50610247483,
%U 260704414816,1370387233859,7346982653702,40131663286851,223238920709024,1263531826402891,7273434344119460
%N Number of set partitions of {1, ..., n} whose blocks are all singletons and pairs, not including {1, n} or {i, i + 1} for any i.
%C Also the number of spanning subgraphs of the complement of an n-cycle, with no overlapping edges.
%H Andrew Howroyd, <a href="/A306419/b306419.txt">Table of n, a(n) for n = 0..500</a>
%F a(n) = Sum_{k=0..floor(n/2)} (-1)^k*A034807(n, k)*A000085(n-2*k) for n > 2. - _Andrew Howroyd_, Aug 30 2019
%e The a(1) = 1 through a(5) = 11 set partitions:
%e {{1}} {{1}{2}} {{1}{2}{3}} {{13}{24}} {{1}{24}{35}}
%e {{1}{24}{3}} {{13}{24}{5}}
%e {{13}{2}{4}} {{13}{25}{4}}
%e {{1}{2}{3}{4}} {{14}{2}{35}}
%e {{14}{25}{3}}
%e {{1}{2}{35}{4}}
%e {{1}{24}{3}{5}}
%e {{1}{25}{3}{4}}
%e {{13}{2}{4}{5}}
%e {{14}{2}{3}{5}}
%e {{1}{2}{3}{4}{5}}
%t stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
%t Table[Length[stableSets[Complement[Subsets[Range[n],{2}],Sort/@Partition[Range[n],2,1,1]],Intersection[#1,#2]!={}&]],{n,0,10}]
%o (PARI) \\ here b(n) is A000085(n)
%o b(n) = {sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))}
%o a(n) = {if(n < 3, n >= 0, sum(k=0, n\2, (-1)^k*b(n-2*k)*n*(n-1-k)!/(k!*(n-2*k)!)))} \\ _Andrew Howroyd_, Aug 30 2019
%Y Cf. A000085, A000110, A000296, A001006, A001610, A003436 (no singletons), A034807, A170941 (linear case), A278990 (linear case with no singletons), A306417.
%K nonn
%O 0,5
%A _Gus Wiseman_, Feb 14 2019
%E Terms a(16) and beyond from _Andrew Howroyd_, Aug 30 2019