|
|
A306313
|
|
Numbers such that the product of their digits is equal to 10 times the sum of their prime factors, without multiplicity.
|
|
0
|
|
|
1584, 5616, 7452, 8256, 15698, 16956, 18525, 25662, 28512, 34935, 35152, 35275, 35581, 35748, 36584, 46225, 47265, 47594, 51842, 52374, 54479, 55223, 55348, 58432, 65712, 73125, 93875, 118465, 151632, 153615, 154462, 159712, 161785, 172577, 176225, 178754, 182596
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Similar to Rhonda numbers (A099542) where the multiplicity of the prime factors is taken into account.
|
|
LINKS
|
Table of n, a(n) for n=1..37.
|
|
EXAMPLE
|
1584 = 2^4*3^2*11 and 1*5*8*4 = 160 = 10*(2+3+11).
|
|
MAPLE
|
with(numtheory): select(n->convert(convert(n, base, 10), `*`)=10*add(k, k=factorset(n)), [$1..120000]);
|
|
MATHEMATICA
|
Select[Range[2*10^5], Times @@ IntegerDigits[#] == 10 Total[FactorInteger[#][[All, 1]] ] &] (* Michael De Vlieger, Feb 15 2019 *)
|
|
CROSSREFS
|
Cf. A099542.
Sequence in context: A222164 A242539 A224945 * A053170 A237916 A159211
Adjacent sequences: A306310 A306311 A306312 * A306314 A306315 A306316
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Paolo P. Lava, Feb 06 2019
|
|
STATUS
|
approved
|
|
|
|