login
A306313
Numbers such that the product of their digits is equal to 10 times the sum of their prime factors, without multiplicity.
0
1584, 5616, 7452, 8256, 15698, 16956, 18525, 25662, 28512, 34935, 35152, 35275, 35581, 35748, 36584, 46225, 47265, 47594, 51842, 52374, 54479, 55223, 55348, 58432, 65712, 73125, 93875, 118465, 151632, 153615, 154462, 159712, 161785, 172577, 176225, 178754, 182596
OFFSET
1,1
COMMENTS
Similar to Rhonda numbers (A099542) where the multiplicity of the prime factors is taken into account.
EXAMPLE
1584 = 2^4*3^2*11 and 1*5*8*4 = 160 = 10*(2+3+11).
MAPLE
with(numtheory): select(n->convert(convert(n, base, 10), `*`)=10*add(k, k=factorset(n)), [$1..120000]);
MATHEMATICA
Select[Range[2*10^5], Times @@ IntegerDigits[#] == 10 Total[FactorInteger[#][[All, 1]] ] &] (* Michael De Vlieger, Feb 15 2019 *)
CROSSREFS
Cf. A099542.
Sequence in context: A222164 A242539 A224945 * A053170 A237916 A159211
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Feb 06 2019
STATUS
approved