login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The smallest prime factor of numbers greater than 1 and coprime to 6.
3

%I #122 Jul 10 2020 13:23:32

%S 5,7,11,13,17,19,23,5,29,31,5,37,41,43,47,7,53,5,59,61,5,67,71,73,7,

%T 79,83,5,89,7,5,97,101,103,107,109,113,5,7,11,5,127,131,7,137,139,11,

%U 5,149,151,5,157,7,163,167,13,173,5,179,181,5,11,191,193

%N The smallest prime factor of numbers greater than 1 and coprime to 6.

%C a(n) is the least prime factor of the n-th number that is greater than 1 and congruent to 1 or 5 (mod 6).

%C a(n) = 5 when n is congruent to {1, 8} (mod 10) (n is a term in A017281, A017365, or A306277). a(n) = 7 when n is congruent to {2, 11} (mod 14) but not {1, 8} (mod 10). a(n) = 11 when n is congruent to {3, 18} (mod 22) but not a case where it equals 5 or 7. a(n) = 13 when n is congruent to {4, 21} (mod 26) (n is a term in A306285) but not a case where it equals 5, 7, or 11. a(n) = 17 when n is congruent to {5, 28} (mod 34) but not a case where it equals 5, 7, 11, or 13. a(n) = 19 when n is congruent to {6, 31} (mod 38) (n is a term in A306331) but not a case where it equals 5, 7, 11, 13, or 17.

%C Conjecture: This pattern continues indefinitely. a(n) = A007310(m + 1) when n is congruent to {m, A306277(m + 1)} (mod A091999(m + 1)) but not congruent to {k, A306277(k + 1)} (mod A091999(k + 1)), m > k >= 1. The indices of the first appearance of a number in this sequence supports this conjecture in that they are never, for m > 0, congruent to A306277(m + 1) mod A091999(m + 1).

%D G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 2, Section 2, Problems 96 and 105.

%H Davis Smith, <a href="/A306289/b306289.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A020639(A007310(n + 1)).

%F a(n) = A020639(3n + A000034(n + 1)).

%F a(n) = A020639(6*ceiling(n/2) + (-1)^n).

%F a(floor(prime(n + 2)/3)) = prime(n + 2).

%e a(n) is the least term, other than 0, in n-th row of the array A(m,n), where A(m,n) is A007310(m + 1) when A007310(n + 1) mod A007310(m + 1) is congruent to 0, otherwise 0.

%e Table begins

%e \m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

%e n\

%e 1| 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

%e 2| 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

%e 3| 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

%e 4| 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 ...

%e 5| 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 ...

%e 6| 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 ...

%e 7| 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 ...

%e 8| 5 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 ...

%e 9| 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 ...

%e 10| 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 ...

%e 11| 5 7 0 0 0 0 0 0 0 0 35 0 0 0 0 0 ...

%e 12| 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 ...

%e 13| 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 ...

%e 14| 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0 0 ...

%e 15| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 ...

%e 16| 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 49 ...

%e For the n-th row of this square array, the leftmost terms, other than 0, are the factors of A(n,n). A(n,n) = A007310(n + 1). If for every m, m < n, A(m,n) = 0, then a(n) = A007310(n + 1) and A007310(n + 1) is prime.

%p seq(min(op(numtheory[factorset] (6*ceil(n/2)+(-1)^n))), n=1..64) ;

%t FactorInteger[Rest@ Flatten@ Array[6 # + {1, 5} &, 33, 0]][[All, 1, 1]] (* _Michael De Vlieger_, Feb 15 2019 *)

%t FactorInteger[#][[1,1]]&/@Select[Range[2,200],CoprimeQ[#,6]&] (* _Harvey P. Dale_, Jul 10 2020 *)

%o (PARI) for(n=2, 211, if((n%6==1)||(n%6==5), print1(factor(n)[1,1], ", ")))

%o (PARI) vector(64,n,factor(6*ceil(n/2)+(-1)^n)[1,1])

%o (PARI) a(n) = n++; factor(n\2*6-(-1)^n)[1,1]; \\ _Michel Marcus_, Feb 06 2019

%Y Cf. A000034, A007310, A010729, A017281, A017365, A020639, A091999, A273669, A306277, A306285, A306331.

%Y Cf. A107744, A111863 (bisections).

%K nonn

%O 1,1

%A _Davis Smith_, Feb 03 2019