Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Nov 07 2020 14:15:40
%S 1,2,2,2,3,4,5,3,3,7,8,4,10,11,4,4,13,6,15,6,5,18,19,5,5,21,6,9,24,8,
%T 26,6,7,29,6,6,31,32,8,7,35,10,37,16,7,40,41,7,7,10,10,19,46,12,8,9,
%U 14,51,52,8,54,55,8,8,9,14,59,26,16,12,63,9,65,66,10
%N a(n) is the smallest positive integer x such that x^2 mod n is a square, with x^2 >= n.
%H Daniel Suteu, <a href="/A306271/b306271.txt">Table of n, a(n) for n = 1..10000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Congruence_of_squares">Congruence of squares</a>
%F a(n^2) = n.
%F a(p) = p - floor(sqrt(p)), for prime p > 2.
%e For n = 10, a(10) = 7, which is the smallest positive integer x such that x^2 mod n is a square and that x^2 >= n. Here 7^2 mod 10 = 9 = 3^2.
%p a:= proc(n) local k, t;
%p for k do t:= irem(k^2, n);
%p if issqr(t) and isqrt(t)<>k then break fi
%p od; k
%p end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Feb 01 2019
%t a[n_] := For[x = Sqrt[n]//Ceiling, True, x++, If[IntegerQ[Sqrt[PowerMod[x, 2, n]]], Return[x]]];
%t Array[a, 100] (* _Jean-François Alcover_, Nov 07 2020 *)
%o (PARI) a(n) = for(k=sqrtint(n), oo, if(issquare(k^2 % n) && sqrtint(k^2 % n) != k, return(k)));
%Y Cf. A000290, A048152, A062803, A112045, A254328, A306257.
%K nonn
%O 1,2
%A _Daniel Suteu_, Feb 01 2019