Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Feb 04 2019 11:22:01
%S 7,160541,94727075783
%N Wieferich primes to base 30.
%C Prime numbers p such that p^2 divides 30^(p-1) - 1.
%C No more terms up to 9.8*10^13.
%H Richard Fischer, <a href="http://www.fermatquotient.com/FermatQuotienten/">Fermatquotient B^(P-1) == 1 (mod P^2)</a>
%H P. L. Montgomery, <a href="http://www.jstor.org/stable/2152960">New Solutions of a^p-1 == 1 (mod p^2)</a>, Mathematics of Computation, Vol. 61, No. 203 (1993), 361-363.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Wieferich_prime">Wieferich prime</a>
%o (PARI) forprime(p=2, , if(Mod(30, p^2)^(p-1)==1, print1(p, ", ")))
%Y Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), A306255 (b=26), this sequence (b=30).
%K nonn,hard,bref,more
%O 1,1
%A _Jianing Song_, Feb 01 2019