Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #79 Jun 18 2022 23:03:43
%S 1,1,1,1,1,1,1,1,2,1,1,1,3,5,1,1,1,4,17,15,1,1,1,5,43,179,52,1,1,1,6,
%T 89,1279,3489,203,1,1,1,7,161,5949,108472,127459,877,1,1,1,8,265,
%U 20591,1546225,26888677,8873137,4140,1
%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = Sum_{j=0..n-1} k^j * binomial(n-1,j) * A(j,k) for n > 0.
%H Seiichi Manyama, <a href="/A306245/b306245.txt">Antidiagonals n = 0..55, flattened</a>
%F G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(k * x / (1 - x)) / (1 - x). - _Seiichi Manyama_, Jun 18 2022
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, 1, ...
%e 1, 2, 3, 4, 5, 6, ...
%e 1, 5, 17, 43, 89, 161, ...
%e 1, 15, 179, 1279, 5949, 20591, ...
%e 1, 52, 3489, 108472, 1546225, 12950796, ...
%p A:= proc(n, k) option remember; `if`(n=0, 1,
%p add(k^j*binomial(n-1, j)*A(j, k), j=0..n-1))
%p end:
%p seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Jul 28 2019
%t A[0, _] = 1;
%t A[n_, k_] := A[n, k] = Sum[k^j Binomial[n-1, j] A[j, k], {j, 0, n-1}];
%t Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, May 29 2020 *)
%Y Columns k=0..4 give A000012, A000110, A126443, A355081, A355082.
%Y Rows n=0+1, 2 give A000012, A000027(n+1).
%Y Main diagonal gives A309401.
%Y Cf. A309386.
%K nonn,tabl
%O 0,9
%A _Seiichi Manyama_, Jul 28 2019