%I #4 Jun 23 2018 12:43:53
%S 8,9,32,103,298,962,2966,8756,26287,79873,241656,729008,2201471,
%T 6653034,20101552,60722489,183440897,554200361,1674289991,5058110361,
%U 15280857422,46164569525,139466343261,421337009501,1272887195452,3845478091572
%N Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A306166.
%H R. H. Hardin, <a href="/A306162/b306162.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) +4*a(n-2) -a(n-4) -17*a(n-5) -22*a(n-6) +2*a(n-7) +38*a(n-8) +42*a(n-9) -5*a(n-10) -5*a(n-11) -9*a(n-12) -24*a(n-13) -26*a(n-14) -20*a(n-15) +6*a(n-16) +20*a(n-17) +16*a(n-18) for n>23
%e Some solutions for n=5
%e ..0..0..0..0. .0..1..0..0. .0..0..1..1. .0..0..0..1. .0..0..1..1
%e ..1..0..0..1. .0..0..0..0. .0..0..1..1. .0..0..1..0. .0..1..0..1
%e ..0..0..0..0. .0..0..0..0. .1..1..1..1. .0..0..0..0. .1..0..1..1
%e ..1..0..0..0. .0..0..0..1. .1..1..1..1. .1..0..0..1. .1..1..1..1
%e ..0..0..1..0. .0..1..0..0. .1..1..1..1. .0..0..0..0. .1..1..1..1
%Y Cf. A306166.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jun 23 2018