login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306136
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 13, 24, 1, 1, 82, 64, 64, 82, 1, 1, 272, 240, 498, 240, 272, 1, 1, 908, 842, 2922, 2922, 842, 908, 1, 1, 3076, 3302, 16877, 31843, 16877, 3302, 3076, 1, 1, 10444, 12740, 111073, 267988, 267988, 111073, 12740, 10444, 1, 1, 35480, 48468
OFFSET
1,5
COMMENTS
Table starts
.1.....1.....1.......1.........1...........1............1..............1
.1.....4.....8......24........82.........272..........908...........3076
.1.....8....13......64.......240.........842.........3302..........12740
.1....24....64.....498......2922.......16877.......111073.........700859
.1....82...240....2922.....31843......267988......2889140.......29281552
.1...272...842...16877....267988.....3176303.....50158767......730698959
.1...908..3302..111073...2889140....50158767...1284005626....29447872807
.1..3076.12740..700859..29281552...730698959..29447872807..1028875496355
.1.10444.48468.4405884.289967701.10451513277.652802237683.34579655304548
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 20]
k=4: [order 71] for n>72
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..1..0. .0..0..1..0. .0..0..0..1. .0..1..0..1
..0..0..0..0. .1..1..1..1. .0..0..1..1. .1..1..1..0. .1..0..0..1
..1..1..1..1. .1..1..0..1. .0..0..0..0. .1..1..1..1. .1..1..0..0
..1..0..1..1. .1..1..0..1. .1..1..0..0. .1..1..1..0. .0..0..0..1
..1..0..0..0. .1..1..0..1. .0..0..1..1. .1..1..1..0. .1..0..1..0
CROSSREFS
Column 2 is A303882.
Sequence in context: A316576 A304551 A316376 * A317271 A304419 A316244
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 22 2018
STATUS
approved