Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jun 22 2018 12:40:28
%S -1,3,-30,840,-45360,3963960,-512431920,91708016400,-21708518832000,
%T 6566197230552960,-2470377569057798400,1131411784221938419200,
%U -619741850665486348800000,400063411654998957081216000,-300571110264723992167009536000,260020540519396684696076728320000,-256606704941070116606793272893440000,286541492507208304817420296882114560000
%N G.f. A(x) satisfies: (1 + A(x))^A(x) = (1+x)^x, where A(x) = Sum_{n>=1} a(n)*x^n/(2*n-1)!.
%C The g.f. is also given by: A(x) = Sum_{n>=0} A306090(n)/A306091(n) * x^n.
%H Paul D. Hanna, <a href="/A306092/b306092.txt">Table of n, a(n) for n = 1..300</a>
%F G.f. A(x) = Sum_{n>=1} a(n)*x^n/(2*n-1)! satisfies:
%F (1) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + k*A(x) = 1.
%F (2) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + (k - p)*A(x) = (1 + x)^p.
%F (3) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k - m)*x + k*A(x) = (1 + A(x))^m.
%F (4) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k - m)*x + (k - p)*A(x) = (1+x)^p * (1 + A(x))^m.
%F (5) A(A(x)) = x.
%F (6) (1 + A(x))^A(x) = (1 + x)^x.
%e G.f.: A(x) = -x + 3*x^2/3! - 30*x^3/5! + 840*x^4/7! - 45360*x^5/9! + 3963960*x^6/11! - 512431920*x^7/13! + 91708016400*x^8/15! - 21708518832000*x^9/17! + 6566197230552960*x^10/19! - 2470377569057798400*x^11/21! + 1131411784221938419200*x^12/23! - 619741850665486348800000*x^13/25! + ...
%e such that
%e (E.1) 1 = 1 + (x + A(x)) + (x + 2*A(x))*(2*x + A(x))/2! + (x + 3*A(x))*(2*x + 2*A(x))*(3*x + A(x))/3! + (x + 4*A(x))*(2*x + 3*A(x))*(3*x + 2*A(x))*(4*x + A(x))/4! + (x + 5*A(x))*(2*x + 4*A(x))*(3*x + 3*A(x))*(4*x + 2*A(x))*(5*x + A(x))/5! + ...
%e (E.2) (1 + x)^p = 1 + (x + (1-p)*A(x)) + (x + (2-p)*A(x))*(2*x + (1-p)*A(x))/2! + (x + (3-p)*A(x))*(2*x + (2-p)*A(x))*(3*x + (1-p)*A(x))/3! + (x + (4-p)*A(x))*(2*x + (3-p)*A(x))*(3*x + (2-p)*A(x))*(4*x + (1-p)*A(x))/4! + ...
%e (E.3) (1 + A(x))^m = 1 + ((1-m)*x + A(x)) + ((1-m)*x + 2*A(x))*((2-m)*x + A(x))/2! + ((1-m)*x + 3*A(x))*((2-m)*x + 2*A(x))*((3-m)*x + A(x))/3! + ((1-m)*x + 4*A(x))*((2-m)*x + 3*A(x))*((3-m)*x + 2*A(x))*((4-m)*x + A(x))/4! + ...
%e FUNCTIONAL EQUATION.
%e The series A(x) satisfies:
%e (E.4) (1 + A(x))^A(x) = (1 + x)^x = 1 + x^2 - 1/2*x^3 + 5/6*x^4 - 3/4*x^5 + 33/40*x^6 - 5/6*x^7 + 2159/2520*x^8 - 209/240*x^9 + ...
%e GENERATING METHOD.
%e Although the functional equation (1 + A(x))^A(x) = (1 + x)^x has an infinite number of solutions, one may arrive at the g.f. A(x) by the following iteration.
%e If we start with A = -x, and iterate
%e (E.5) A = (A + x*log(1 + x)/log(1 + A))/2
%e then A will converge to g.f. A(x).
%o (PARI) /* From Functional Equation (1 + A(x))^A(x) = (1 + x)^x */
%o {a(n) = my(A = -x +x*O(x^n)); for(i=1, n, A = (A + x*log(1+x +x*O(x^n))/log(1+A))/2 ); (2*n-1)! * polcoeff(A, n)}
%o for(n=1, 20, print1(a(n), ", "))
%Y Cf. A306090, A306091.
%K sign
%O 1,2
%A _Paul D. Hanna_, Jun 22 2018