login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k)^k.
2

%I #14 Mar 11 2024 01:54:33

%S 1,1,5,43,401,4651,64265,1015603,17996081,354373531,7682286425,

%T 181466541763,4632985312961,127068851847211,3724903637434985,

%U 116185013450349523,3840969677266089041,134113334651486325691,4930511086446971405945,190327859758408148070883

%N Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k)^k.

%H Vaclav Kotesovec, <a href="/A306080/b306080.txt">Table of n, a(n) for n = 0..410</a>

%H Vaclav Kotesovec, <a href="/A306080/a306080.jpg">Graph - The asymptotic ratio</a>

%F a(n) = Sum_{k=0..n} Stirling2(n,k) * A026007(k) * k!.

%F a(n) ~ n! * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (4 * log(2)^(2/3)) + (1 - log(2)) * (3*Zeta(3))^(2/3) * n^(1/3) / (8 * log(2)^(4/3)) - (log(2)^2 + log(2) - 1) * Zeta(3) / (16 * log(2)^2)) * Zeta(3)^(1/6) / (2^(13/12) * 3^(1/3) * sqrt(Pi) * n^(2/3) * (log(2))^(n + 1/3)). - _Vaclav Kotesovec_, Jun 23 2018

%t nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

%Y Cf. A026007, A305550, A306046, A306081.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Jun 20 2018