login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k)^k.
2

%I #14 Mar 11 2024 01:54:33

%S 1,1,5,43,401,4651,64265,1015603,17996081,354373531,7682286425,

%T 181466541763,4632985312961,127068851847211,3724903637434985,

%U 116185013450349523,3840969677266089041,134113334651486325691,4930511086446971405945,190327859758408148070883

%N Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k)^k.

%H Vaclav Kotesovec, <a href="/A306080/b306080.txt">Table of n, a(n) for n = 0..410</a>

%H Vaclav Kotesovec, <a href="/A306080/a306080.jpg">Graph - The asymptotic ratio</a>

%F a(n) = Sum_{k=0..n} Stirling2(n,k) * A026007(k) * k!.

%F a(n) ~ n! * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (4 * log(2)^(2/3)) + (1 - log(2)) * (3*Zeta(3))^(2/3) * n^(1/3) / (8 * log(2)^(4/3)) - (log(2)^2 + log(2) - 1) * Zeta(3) / (16 * log(2)^2)) * Zeta(3)^(1/6) / (2^(13/12) * 3^(1/3) * sqrt(Pi) * n^(2/3) * (log(2))^(n + 1/3)). - _Vaclav Kotesovec_, Jun 23 2018

%t nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

%Y Cf. A026007, A305550, A306046, A306081.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Jun 20 2018