login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{d|n, d<n} prime(A305793(1+d)-1), where A305973(k) records the prime signature of 2k-1.
4

%I #6 Jun 16 2018 18:31:26

%S 1,2,2,4,2,8,2,12,4,8,2,48,2,20,8,24,2,32,2,120,20,8,2,288,4,28,8,120,

%T 2,320,2,120,8,20,20,576,2,20,28,480,2,320,2,264,32,8,2,4320,10,200,

%U 20,168,2,320,8,1200,20,8,2,11520,2,44,80,600,28,704,2,300,8,800,2,6912,2,44,80,300,20,448,2,31200,40,8,2,72000,20,20,8

%N a(n) = Product_{d|n, d<n} prime(A305793(1+d)-1), where A305973(k) records the prime signature of 2k-1.

%H Antti Karttunen, <a href="/A305982/b305982.txt">Table of n, a(n) for n = 1..8192</a>

%F a(n) = Product_{d|n, d<n} A008578(A305793(1+d)).

%o (PARI) A305982(n) = { my(m=1); fordiv(n, d, if((d<n), m *= prime(A305973(1+d)-1))); (m); }; \\ Needs also code from A305973.

%Y Cf. A305973, A305983 (rgs-transform), A305984.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jun 15 2018