login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length-n restricted growth strings (RGS) with growth <= four and fixed first element.
3

%I #13 Jun 17 2018 14:04:30

%S 1,1,5,35,305,3125,36479,475295,6811205,106170245,1784531879,

%T 32117927231,615413731205,12493421510405,267608512061159,

%U 6026688403933967,142256385130774229,3509899012049396645,90301862963332188839,2417349828110572405823,67201548131159391828677

%N Number of length-n restricted growth strings (RGS) with growth <= four and fixed first element.

%H Alois P. Heinz, <a href="/A305964/b305964.txt">Table of n, a(n) for n = 0..460</a>

%F a(n) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..4} (exp(j*x)-1)/j) for n>0, a(0) = 1.

%p b:= proc(n, m) option remember; `if`(n=0, 1,

%p add(b(n-1, max(m, j)), j=1..m+4))

%p end:

%p a:= n-> b(n, -3):

%p seq(a(n), n=0..25);

%p # second Maple program:

%p a:= n-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add(

%p (exp(j*x)-1)/j, j=1..4)), x, n), x, n-1)):

%p seq(a(n), n=0..25);

%Y Column k=4 of A305962.

%Y Cf. A306028.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jun 15 2018