login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

-1 + Product_{n>=1} (1 + x^n)^a(n) = g.f. of A000040 (prime numbers).
7

%I #13 Feb 18 2022 07:55:36

%S 2,2,1,2,2,-2,2,-2,4,-1,4,-7,10,-19,20,-20,34,-42,64,-100,126,-178,

%T 258,-326,464,-675,936,-1371,1888,-2550,3690,-5208,7292,-10467,14742,

%U -20808,29610,-41586,59052,-84438,119602,-170153,242256,-343534,489550,-697815

%N -1 + Product_{n>=1} (1 + x^n)^a(n) = g.f. of A000040 (prime numbers).

%C Inverse weigh transform of A000040.

%H Alois P. Heinz, <a href="/A305871/b305871.txt">Table of n, a(n) for n = 1..3000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{k>=1} prime(k)*x^k.

%e (1 + x)^2 * (1 + x^2)^2 * (1 + x^3) * (1 + x^4)^2 * (1 + x^5)^2 * (1 + x^6)^(-2) * ... * (1 + x^n)^a(n) * ... = 1 + 2*x + 3*x^2 + 5*x^3 + 7*x^4 + 11*x^5 + 13*x^6 + ... + A000040(k)*x^k + ...

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))

%p end:

%p a:= proc(n) option remember; ithprime(n)-b(n, n-1) end:

%p seq(a(n), n=1..50); # _Alois P. Heinz_, Jun 13 2018

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,

%t Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];

%t a[n_] := a[n] = Prime[n] - b[n, n - 1];

%t Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Feb 18 2022, after _Alois P. Heinz_ *)

%Y Cf. A000040, A030010, A030011, A061152.

%K sign

%O 1,1

%A _Ilya Gutkovskiy_, Jun 12 2018