login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(0,0) = 1; T(n,k) = 5*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
2

%I #13 Sep 05 2018 02:27:19

%S 1,5,25,1,125,10,625,75,1,3125,500,15,15625,3125,150,1,78125,18750,

%T 1250,20,390625,109375,9375,250,1,1953125,625000,65625,2500,25,

%U 9765625,3515625,437500,21875,375,1,48828125,19531250,2812500,175000,4375,30,244140625,107421875,17578125,1312500,43750,525,1

%N Triangle read by rows: T(0,0) = 1; T(n,k) = 5*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

%C The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013612 ((1+5*x)^n).

%C The coefficients in the expansion of 1/(1-5x-x^2) are given by the sequence generated by the row sums.

%C If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 5.1925824035..., a metallic mean (see A098318), when n approaches infinity.

%D Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 92, 380, 382.

%H Shara Lalo, <a href="/A305837/a305837.pdf">Left-justified triangle </a>

%H Shara Lalo, <a href="/A305837/a305837_1.pdf">Skew diagonals in triangle A013612</a>

%F G.f.: 1/(1 - 5*t*x - t^2).

%e Triangle begins:

%e 1;

%e 5;

%e 25, 1;

%e 125, 10;

%e 625, 75, 1;

%e 3125, 500, 15;

%e 15625, 3125, 150, 1;

%e 78125, 18750, 1250, 20;

%e 390625, 109375, 9375, 250, 1;

%e 1953125, 625000, 65625, 2500, 25;

%e 9765625, 3515625, 437500, 21875, 375, 1;

%e 48828125, 19531250, 2812500, 175000, 4375, 30;

%e 244140625, 107421875, 17578125, 1312500, 43750, 525, 1;

%e 1220703125, 585937500, 107421875, 9375000, 393750, 7000, 35;

%e 6103515625, 3173828125, 644531250, 64453125, 3281250, 78750, 700, 1;

%e 30517578125, 17089843750, 3808593750, 429687500, 25781250, 787500, 10500, 40;

%t t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 5 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

%Y Row sums give A052918.

%Y Cf. A000351 (column 0), A053464 (column 1), A081135 (column 2), A081143 (column 3), A036071 (column 4).

%Y Cf. A013612.

%Y Cf. A098318.

%K tabf,nonn,easy

%O 0,2

%A _Shara Lalo_, Jun 11 2018