login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Filter sequence for a(Sophie Germain primes > 3) = constant sequences.
5

%I #13 Jun 16 2018 18:30:26

%S 1,2,3,4,5,6,7,8,9,10,5,11,12,13,14,15,16,17,18,19,20,21,5,22,23,24,

%T 25,26,5,27,28,29,30,31,32,33,34,35,36,37,5,38,39,40,41,42,43,44,45,

%U 46,47,48,5,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,5,78,79,80,81,82,5,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,5

%N Filter sequence for a(Sophie Germain primes > 3) = constant sequences.

%C Filer sequence for all such sequences S, for which S(A005384(k)) = constant for all k >= 3.

%C Restricted growth sequence transform of the ordered pair [A305900(n), A305901(1+n)].

%C For all i, j:

%C a(i) = a(j) => A305900(i) = A305900(j),

%C a(i) = a(j) => A305901(1+i) = A305901(1+j),

%C a(i) = a(j) => A305978(i) = A305978(j),

%C a(i) = a(j) => A305985(i) = A305985(j).

%H Antti Karttunen, <a href="/A305810/b305810.txt">Table of n, a(n) for n = 1..100000</a>

%F If n < 5, a(n) = n; for n >= 5, a(n) = 5 if A156660(n) == 1 [when n is in A005384[3..] = 5, 11, 23, 29, 41, 53, 83, 89, 113, ...], otherwise a(n) = 3+n-A156874(n).

%o (PARI)

%o up_to = 100000;

%o A156660(n) = (isprime(n)&&isprime(2*n+1)); \\ From A156660

%o partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); }

%o v156874 = partialsums(A156660, up_to);

%o A156874(n) = v156874[n];

%o A305810(n) = if(n<5,n,if(A156660(n),5,3+n-A156874(n)));

%Y Cf. A005384, A156660, A156874, A305900, A305901, A305978, A305985.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jun 16 2018