login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} ((1 - k*x^k) / (1 + k*x^k))^k.
1

%I #14 Mar 01 2024 19:16:33

%S 1,-2,-6,-4,22,72,84,-32,-474,-1310,-1728,60,6420,18712,31080,24992,

%T -34074,-186468,-430138,-650612,-496296,687120,3599652,8413968,

%U 13374148,12772246,-3910080,-50592280,-136089520,-244815336,-309079848,-176916784,391358838

%N Expansion of Product_{k>=1} ((1 - k*x^k) / (1 + k*x^k))^k.

%H Robert Israel, <a href="/A305745/b305745.txt">Table of n, a(n) for n = 0..6234</a>

%F Convolution of A266964 and A266971.

%F Convolution inverse of A266942.

%p N:= 50: # for a(0) .. a(N)

%p f:= mul(((1-k*x^k)/(1+k*x^k))^k,k=1..N):

%p S:= series(f,x,N+1):

%p seq(coeff(S,x,i),i=0..N); # _Robert Israel_, Mar 01 2024

%o (PARI) N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-k*x^k)/(1+k*x^k))^k))

%Y Cf. A266942, A266964, A266971, A292317.

%K sign

%O 0,2

%A _Seiichi Manyama_, Jun 09 2018