login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(cos(x)/exp(x) - 1).
1

%I #6 Mar 27 2019 03:53:00

%S 1,-1,1,1,-11,43,-83,-275,3833,-21561,51369,375593,-5860147,40452371,

%T -101676235,-1409619211,23912208945,-189650997937,454996127889,

%U 11250036170129,-204691511497499,1799897065507003,-3741969787709699,-164548323889940675,3183842522596250537,-30356999697044585833

%N Expansion of e.g.f. exp(cos(x)/exp(x) - 1).

%e exp(cos(x)/exp(x) - 1) = 1 - x + x^2/2! + x^3/3! - 11*x^4/4! + 43*x^5/5! - 83*x^6/6! - 275*x^7/7! + ...

%p a:=series(exp(cos(x)/exp(x)-1),x=0,26): seq(n!*coeff(a,x,n),n=0..25); # _Paolo P. Lava_, Mar 26 2019

%t nmax = 25; CoefficientList[Series[Exp[Cos[x]/Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!

%t a[n_] := a[n] = Sum[Re[(-1 - I)^k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 25}]

%Y Cf. A004211, A009116, A009216, A009235, A009255, A009276, A146559, A155585.

%K sign

%O 0,5

%A _Ilya Gutkovskiy_, Jun 08 2018