login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305700
a(n) is the numerator of Sum_{primes p < n} 1/(n-p).
2
0, 0, 1, 3, 5, 19, 19, 17, 89, 673, 47, 979, 1297, 4883, 1771, 79613, 31, 393959, 2033, 85639, 116551, 616181, 4111, 16637083, 727403, 13117673, 72631, 122771983, 194803, 31691158757, 491951, 124085749, 9079549, 114103102711, 92671, 743246297281, 213649, 197986199, 972486919, 144015774883
OFFSET
1,4
EXAMPLE
Sum_{primes p < 6} 1/(6-p) = 1/(6-2) + 1/(6-3) + 1/(6-5) = 19/12 so a(6) = 19.
MAPLE
N:= 100: # to get a(1)..a(N)
P:= select(isprime, [2, seq(i, i=3..N, 2)]):
seq(numer(add(1/(n-p), p=select(`<`, P, n))), n=1..N);
MATHEMATICA
a[n_] := Sum[1/(n-p), {p, Prime[Range[PrimePi[n-1]]]}] // Numerator;
Array[a, 100] (* Jean-François Alcover, Apr 29 2019 *)
PROG
(PARI) a(n) = my(p=select(x->isprime(x), [1..n-1])); numerator(sum(k=1, #p, 1/(n-p[k]))); \\ Michel Marcus, Jun 09 2018
CROSSREFS
Cf. A305702 (denominators).
Sequence in context: A270723 A242961 A025046 * A299073 A329797 A180931
KEYWORD
nonn,frac
AUTHOR
Robert Israel, Jun 08 2018
STATUS
approved