Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 08 2018 13:51:07
%S 1,2,54,852,12550,183356,2698108,40090728,600970566,9074671980,
%T 137844584020,2104090834456,32247569822364,495918392331992,
%U 7648690018326840,118264579157865424,1832624131015069254,28453041434367110220,442512540108817131364
%N a(n) = binomial(4*n, 2*n) - 4*n*binomial(2*n-2, n-1).
%H Seiichi Manyama, <a href="/A305693/b305693.txt">Table of n, a(n) for n = 0..500</a>
%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1098/rspa.1997.0126">Low-Dimensional Lattices VII: Coordination Sequences</a>, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%F a(n) = A000984(2*n) - 4*n*A000984(n-1) for n > 0.
%F G.f.: sqrt(1 + sqrt(1 - 16*x))/sqrt(2*(1 - 16*x)) - 4*x*(1 - 2*x)/(1 - 4*x)^(3/2). - _Ilya Gutkovskiy_, Jun 08 2018
%o (PARI) {a(n) = binomial(4*n, 2*n)-4*n*binomial(2*n-2, n-1)}
%Y Cf. A000984, A108558.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Jun 08 2018