login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Engel expansion whose sum has the concatenation of its terms as decimal part. Case a(1) = 3.
12

%I #6 Jun 12 2018 21:13:09

%S 3,41,480,3570,4893,7999,33195,52784,72024,175468,621177,832820,

%T 6728999,8151748,78184626,273362479,883593178,3960000113,28999908410,

%U 195575352926,750833617579,1453443477101,9100308145444,49027044651379,67795387220152,78305516479292

%N Engel expansion whose sum has the concatenation of its terms as decimal part. Case a(1) = 3.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EngelExpansion.html ">Engel expansion</a>

%e 1/3 = 0.3333...

%e 1/3 + 1/(3*41) = 0.341463...

%e 1/3 + 1/(3*41) + 1/(3*41*480) = 0.341480352...

%e The sum is 0.3 41 480 3570 4893 7999 ...

%p P:=proc(q, h) local a, b, c, d, n, x; x:=1; a:=1/h; b:=ilog10(h)+1; c:=h; d:=h; print(d);

%p for n from x to q do if trunc(evalf(a+1/(c*n),100)*10^(b+ilog10(n)+1))=d*10^(ilog10(n)+1)+n

%p then x:=n+1; b:=b+ilog10(n)+1; d:=d*10^(ilog10(n)+1)+n; a:=a+1/(c*n); c:=c*n;

%p print(n); fi; od; end: P(10^9,3);

%Y Cf. A302932, A302933, A303388, A304285, A304286, A304287, A304288, A304289, A305661, A305662, A305663, A305664, A305665, A305666, A305668.

%K nonn,base

%O 1,1

%A _Paolo P. Lava_, Jun 12 2018

%E a(5)-a(26) from _Giovanni Resta_, Jun 12 2018