login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of chiral pairs of color loops of length n with exactly 3 different colors.
3

%I #14 Jun 08 2018 11:12:57

%S 0,0,1,3,12,35,111,318,934,2634,7503,21071,59472,167229,472133,

%T 1333263,3777600,10721837,30516447,87035631,248820816,712751271,

%U 2045784183,5882388956,16942974060,48876617790,141204945463,408495109005,1183247473872,3431451145390,9962348798055,28953196894668

%N Number of chiral pairs of color loops of length n with exactly 3 different colors.

%F a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=3 different colors used and where S2(n,k) is the Stirling subset number A008277.

%F a(n) = (A052823(n) - A056489(n)) / 2.

%F a(n) = A305541(n,3).

%F G.f.: -(3/2) * x^4 * (1+x)^2 / Product_{j=1..3} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-3x^d) - 3*log(1-2x^d) + 3*log(1-x^d)).

%e For a(4)=3, the chiral pairs of color loops are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.

%t k=3; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]

%o (PARI) a(n) = my(k=3); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ _Michel Marcus_, Jun 06 2018

%Y Third column of A305541.

%K nonn,easy

%O 1,4

%A _Robert A. Russell_, Jun 04 2018