Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 18 2021 02:27:20
%S 1,1,3,13,75,557,5179,58589,784715,12154061,213593563,4195613373,
%T 91031201643,2160916171181,55687501548539,1547866851663261,
%U 46150908197995403,1469089501918434957,49722765216242122267,1782934051704982201469,67514992620138056010667
%N Expansion of 1/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 4*x/(1 - 4*x/(1 - 6*x/(1 - 6*x/(1 - ...)))))))), a continued fraction.
%C Invert transform of A000165, shifted right one place.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%F a(n) ~ 2^(n-1) * (n-1)!. - _Vaclav Kotesovec_, Sep 18 2021
%t nmax = 20; CoefficientList[Series[1/(1 - x/(1 + ContinuedFractionK[-2 Floor[(k + 1)/2] x, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
%t nmax = 20; CoefficientList[Series[1/(1 - Sum[2^(k - 1) (k - 1)! x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%t a[0] = 1; a[n_] := a[n] = Sum[2^(k - 1) (k - 1)! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
%Y Cf. A000165, A051295, A051296, A112934, A141307, A292778.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Jun 04 2018