%I #25 Jun 03 2018 07:43:53
%S 0,1728,-3375,8000,-32768,54000,-191025,287496,-884736,1264000,
%T -3491750,4834944,-12288000,16581375,-39491307,52250000,-117964800,
%U 153542016,-331531596,425692800,-884736000,1122662608,-2257834125,2835810000,-5541101568,6896880000,-13136684625
%N Let s(D) = Sum_{(a,b,c)} j((-b+sqrt(D))/(2*a)) where (a,b,c) is taken over all the primitive reduced binary quadratic forms a*x^2+b*xy+c*y^2 with b^2-4*ac = D. This sequence is s(D) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .
%H Seiichi Manyama, <a href="/A305494/b305494.txt">Table of n, a(n) for n = 1..1000</a>
%e In the case D = -15,
%e j((1+sqrt(-15))/2) + j((1+sqrt(-15))/4) = (-191025-85995*sqrt(5))/2 + (-191025+85995*sqrt(5))/2 = -191025.
%e ----+-------------------------------------------+---------
%e D | Coefficients of Hilbert class polynomial | a(n)
%e ----+-------------------------------------------+---------
%e -3 | 0, 1; | 0
%e -4 | -1728, 1; | 1728
%e -7 | 3375, 1; | -3375
%e -8 | -8000, 1; | 8000
%e -11 | 32768, 1; | -32768
%e -12 | -54000, 1; | 54000
%e -15 | -121287375, 191025, 1; | -191025
%e -16 | -287496, 1; | 287496
%e -19 | 884736, 1; | -884736
%e -20 | -681472000, -1264000, 1; | 1264000
%e -23 | 12771880859375, -5151296875, 3491750, 1;| -3491750
%e -24 | 14670139392, -4834944, 1; | 4834944
%Y Cf. A014601, A032354, A305474.
%K sign
%O 1,2
%A _Seiichi Manyama_, Jun 02 2018