Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jun 01 2018 11:04:45
%S 0,1,1,1,3,1,2,11,11,2,3,10,7,10,3,5,51,20,20,51,5,8,165,44,26,44,165,
%T 8,13,306,77,169,169,77,306,13,21,993,181,475,1275,475,181,993,21,34,
%U 2867,379,1234,2697,2697,1234,379,2867,34,55,6818,849,5007,13128,5443,13128
%N T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 4, 5 or 8 king-move adjacent elements, with upper left element zero.
%C Table starts
%C ..0....1...1.....2......3......5.......8.......13........21.........34
%C ..1....3..11....10.....51....165.....306......993......2867.......6818
%C ..1...11...7....20.....44.....77.....181......379.......849.......1799
%C ..2...10..20....26....169....475....1234.....5007.....16422......51196
%C ..3...51..44...169...1275...2697...13128....58608....222877.....971263
%C ..5..165..77...475...2697...5443...30344...132479....485885....2234246
%C ..8..306.181..1234..13128..30344..222961..1378090...6504099...42968149
%C .13..993.379..5007..58608.132479.1378090.10709608..62295992..516604339
%C .21.2867.849.16422.222877.485885.6504099.62295992.362139243.3817890104
%H R. H. Hardin, <a href="/A305452/b305452.txt">Table of n, a(n) for n = 1..220</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1) +a(n-2)
%F k=2: a(n) = a(n-1) +3*a(n-2) +8*a(n-3) -4*a(n-4) -16*a(n-5) for n>6
%F k=3: [order 17] for n>18
%F k=4: [order 63] for n>65
%e Some solutions for n=5 k=4
%e ..0..0..1..1. .0..0..1..0. .0..1..0..0. .0..0..1..1. .0..1..1..0
%e ..1..1..1..0. .1..0..0..0. .1..0..0..1. .1..1..1..0. .0..0..0..0
%e ..1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
%e ..0..1..1..0. .1..0..0..1. .0..0..0..1. .0..0..1..1. .1..0..0..1
%e ..0..1..1..0. .0..0..1..0. .0..1..0..0. .0..1..0..1. .0..1..0..0
%Y Column 1 is A000045(n-1).
%Y Column 2 is A304052.
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Jun 01 2018