Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 14 2018 10:51:24
%S 0,1,1,2,2,2,3,0,0,3,4,3,1,3,4,5,4,3,3,4,5,6,5,4,4,4,5,6,7,6,5,2,2,5,
%T 6,7,8,7,6,0,3,0,6,7,8,9,8,7,1,5,5,1,7,8,9,10,9,8,7,1,6,1,7,8,9,10,11,
%U 10,9,8,0,4,4,0,8,9,10,11,12,11,10,5,8
%N Square array read by antidiagonals: T(i,j) = Sprague-Grundy function for position (i,j) in the "R" variant of Wythoff's game.
%H Robert Price, <a href="/A305383/b305383.txt">Table of n, a(n) for n = 0..45450</a>
%H Nhan Bao Ho, <a href="https://doi.org/10.1016/j.jcta.2012.03.010">Two variants of Wythoff's game preserving its P-positions</a>, Journal of Combinatorial Theory, Series A, Volume 119, Issue 6, August 2012, pp. 1302-1314.
%e The first few antidiagonals are:
%e 0,
%e 1,1,
%e 2,2,2,
%e 3,0,0,3,
%e 4,3,1,3,4,
%e 5,4,3,3,4,5,
%e 6,5,4,4,4,5,6,
%e 7,6,5,2,2,5,6,7,
%e 8,7,6,0,3,0,6,7,8,
%e ...
%e The square array begins:
%e ...
%e 9....9 9 9 5 9 1 9 5 9 10
%e 8....8 8 8 8 8 2 8 6 7 9
%e 7....7 7 7 7 0 7 7 8 6 5
%e 6....6 6 6 1 1 4 5 7 8 9
%e 5....5 5 5 0 5 6 4 7 2 1
%e 4....4 4 4 2 3 5 1 0 8 9
%e 3....3 3 3 4 2 0 1 7 8 5
%e 2....2 0 1 3 4 5 6 7 8 9
%e 1....1 2 0 3 4 5 6 7 8 9
%e 0....0 1 2 3 4 5 6 7 8 9
%e a/b. 0 1 2 3 4 5 6 7 8 9
%Y Cf. A305384.
%K nonn,tabl
%O 0,4
%A _N. J. A. Sloane_, Jun 21 2018
%E More terms from _Robert Price_, Jul 12 2018