login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305338
Number of nX6 0..1 arrays with every element unequal to 0, 1, 2, 5 or 8 king-move adjacent elements, with upper left element zero.
1
32, 45, 166, 938, 5296, 30826, 176673, 1020555, 5903993, 34127533, 197271583, 1140610030, 6594835682, 38129175439, 220453330240, 1274613294981, 7369519453297, 42608848364108, 246354614128201, 1424366047791398
OFFSET
1,1
COMMENTS
Column 6 of A305340.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +16*a(n-2) +14*a(n-3) -13*a(n-4) -281*a(n-5) -670*a(n-6) +274*a(n-7) +1603*a(n-8) +3401*a(n-9) +6046*a(n-10) -7020*a(n-11) -18219*a(n-12) -5957*a(n-13) -16117*a(n-14) +27348*a(n-15) +81265*a(n-16) -30709*a(n-17) +23300*a(n-18) +22633*a(n-19) -368240*a(n-20) -10352*a(n-21) +445538*a(n-22) -32488*a(n-23) +155016*a(n-24) +69530*a(n-25) -551919*a(n-26) -160147*a(n-27) -162563*a(n-28) +449555*a(n-29) +750932*a(n-30) -755415*a(n-31) -37241*a(n-32) +548305*a(n-33) -813787*a(n-34) +196587*a(n-35) +778224*a(n-36) -625744*a(n-37) -247332*a(n-38) +474811*a(n-39) -35777*a(n-40) -137576*a(n-41) -2246*a(n-42) -53419*a(n-43) +57524*a(n-44) +63750*a(n-45) -23784*a(n-46) -22418*a(n-47) -13373*a(n-48) +1509*a(n-49) +7244*a(n-50) +103*a(n-51) +1683*a(n-52) -321*a(n-53) -285*a(n-54) +688*a(n-55) -612*a(n-56) -167*a(n-57) +82*a(n-58) -47*a(n-59) +52*a(n-60) +14*a(n-61) -10*a(n-62) for n>66
EXAMPLE
Some solutions for n=5
..0..1..0..0..0..0. .0..0..0..0..1..0. .0..0..0..0..0..0. .0..1..0..1..0..0
..0..0..0..0..0..0. .1..0..0..0..0..0. .1..0..1..0..0..1. .0..0..0..0..0..0
..0..0..0..1..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .1..0..0..0..0..1
..0..0..0..0..0..0. .0..0..1..0..0..1. .0..0..0..0..0..0. .0..0..0..0..0..0
..0..0..1..0..0..0. .0..0..0..0..0..0. .0..0..0..0..1..0. .0..1..0..0..0..0
CROSSREFS
Cf. A305340.
Sequence in context: A353234 A303959 A304602 * A316418 A304924 A306164
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 30 2018
STATUS
approved