login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A305281
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4 or 8 king-move adjacent elements, with upper left element zero.
5
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 11, 24, 1, 1, 82, 36, 36, 82, 1, 1, 272, 87, 166, 87, 272, 1, 1, 908, 256, 487, 487, 256, 908, 1, 1, 3076, 684, 2130, 1185, 2130, 684, 3076, 1, 1, 10444, 1932, 7433, 5060, 5060, 7433, 1932, 10444, 1, 1, 35480, 5308, 30191, 17335
OFFSET
1,5
COMMENTS
Table starts
.1.....1....1......1......1.......1.......1........1.........1..........1
.1.....4....8.....24.....82.....272.....908.....3076.....10444......35480
.1.....8...11.....36.....87.....256.....684.....1932......5308......14809
.1....24...36....166....487....2130....7433....30191....112815.....444834
.1....82...87....487...1185....5060...17335....73058....275241....1135214
.1...272..256...2130...5060...26577...96739...437098...1790654....7846313
.1...908..684...7433..17335...96739..342596..1733499...7108688...34070865
.1..3076.1932..30191..73058..437098.1733499..9804507..44808093..246735199
.1.10444.5308.112815.275241.1790654.7108688.44808093.220905716.1340680187
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 16] for n>18
k=4: [order 38] for n>41
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..0
..1..1..1..1. .0..1..1..0. .0..1..1..0. .1..0..0..0. .0..1..1..0
..1..1..0..0. .0..1..1..0. .1..1..1..1. .0..1..0..1. .0..1..1..0
..0..0..0..0. .1..1..1..0. .0..0..0..0. .1..1..1..0. .0..1..1..0
..1..0..1..1. .0..0..1..0. .0..0..0..0. .0..1..0..1. .1..0..1..0
CROSSREFS
Column 2 is A303882.
Column 3 is A303883.
Column 4 is A303884.
Sequence in context: A296405 A174035 A303888 * A304894 A316576 A304551
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 29 2018
STATUS
approved