login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1/(1 + LambertW(-x/(1 - x))).
3

%I #13 Aug 19 2018 03:52:38

%S 1,1,6,57,748,12565,257526,6232765,173980920,5502613833,194477548330,

%T 7596028355641,324920533473108,15106155118606045,758463525318426942,

%U 40901033617318501845,2357682497456804486896,144670077586483815863569,9414952083720893890165842,647715776085173413399687633

%N Expansion of e.g.f. 1/(1 + LambertW(-x/(1 - x))).

%C Lah transform of A000312.

%H Robert Israel, <a href="/A305276/b305276.txt">Table of n, a(n) for n = 0..369</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) = Sum_{k=0..n} binomial(n-1,k-1)*k^k*n!/k!.

%F a(n) ~ n^n * (1 + exp(1))^(n - 1/2) / exp(n - 1/2). - _Vaclav Kotesovec_, Aug 18 2018

%p S:= series(1/(1+LambertW(-x/(1-x))),x,51):

%p seq(coeff(S,x,j)*j!,j=0..50); # _Robert Israel_, Aug 19 2018

%t nmax = 19; CoefficientList[Series[1/(1 + LambertW[-x/(1 - x)]), {x, 0, nmax}], x] Range[0, nmax]!

%t Join[{1}, Table[Sum[Binomial[n - 1, k - 1] k^k n!/k!, {k, n}], {n, 19}]]

%Y Cf. A000312, A052871, A060356, A305304.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 18 2018