login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305267
a(n) = 68*2^n + 358.
3
426, 494, 630, 902, 1446, 2534, 4710, 9062, 17766, 35174, 69990, 139622, 278886, 557414, 1114470, 2228582, 4456806, 8913254, 17826150, 35651942, 71303526, 142606694, 285213030, 570425702, 1140851046, 2281701734, 4563403110, 9126805862, 18253611366, 36507222374, 73014444390, 146028888422
OFFSET
0,1
COMMENTS
For n>=1, a(n) is the first Zagreb index of the first type of dendrimer nanostar G[n], shown pictorially in the Iranmanesh et al. reference (Fig. 1).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the dendrimer nanostar G[n] is M(G[n]; x, y) = (4*2^n + 23)*x^2*y^2 + (8*2^n + 34)*x^2*y^3 +(2*2^n +16)*x^3*y^3.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
A. Iranmanesh, N. A. Gholami, Computing the Szeged index of two type dendrimer nanostars, Croatica Chemica Acta, 81, No. 2, 2008, 299-303.
FORMULA
G.f.: 2*(213-392*x)/((1-x)*(1-2*x)). - Vincenzo Librandi, May 30 2018
MAPLE
seq(68*2^n+358, n = 0..40);
MATHEMATICA
Table[68 2^n + 358, {n, 0, 35}] (* Vincenzo Librandi, May 30 2018 *)
LinearRecurrence[{3, -2}, {426, 494}, 40] (* Harvey P. Dale, Mar 22 2019 *)
PROG
(Magma) [68*2^n + 358: n in [0..35]]; // Vincenzo Librandi, May 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 29 2018
STATUS
approved