Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 03 2022 23:52:14
%S 58,738,2098,4818,10258,21138,42898,86418,173458,347538,695698,
%T 1392018,2784658,5569938,11140498,22281618,44563858,89128338,
%U 178257298,356515218,713031058,1426062738,2852126098,5704252818,11408506258,22817013138,45634026898,91268054418,182536109458,365072219538,730144439698
%N a(n) = 680*2^n - 622.
%C a(n) is the first Zagreb index of the nanostar dendrimer G[n], shown pictorially as NSD[n] in the Rostami et al. reference (Fig. 2).
%C The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
%C The M-polynomial of the nanostar dendrimer G[n] is M(G[n];x,y) = (56*2^n - 48)*x^2*y^2 + (48*2^n - 44)*x^2*y^3 +(36* 2^n - 35)*x^3*y^3.
%H Colin Barker, <a href="/A305263/b305263.txt">Table of n, a(n) for n = 0..1000</a>
%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
%H M. Rostami, M. Shabanian, and H. Moghanian, <a href="http://www.chalcogen.ro/247_Rostami.pdf">Some topological indices for theoretical study of two types of nanostar dendrimers</a>, Digest J. of Nanomaterials and Biostructures, 7, No. 1, 2012, 247-252.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F From _Colin Barker_, May 31 2018: (Start)
%F G.f.: 2*(29 + 282*x) / ((1 - x)*(1 - 2*x)).
%F a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
%F (End)
%p seq(680*2^n-622, n = 0..40);
%t CoefficientList[Series[2*(29 + 282*x)/((1 - x)*(1 - 2*x)), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Sep 03 2022 *)
%o (PARI) Vec(2*(29 + 282*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ _Colin Barker_, May 31 2018
%Y Cf. A305261, A305262, A305264.
%K nonn,easy
%O 0,1
%A _Emeric Deutsch_, May 29 2018