Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Jun 18 2018 09:30:01
%S 0,1,2,4,2,10,8,15,18,3,30,14,37,29,44,4,64,21,73,60,44,86,5,73,99,
%T 125,31,136,61,147,124,98,163,6,204,41,217,80,230,161,204,129,255,7,
%U 308,52,235,330,198,298,107,359,163,374,276,335,8,456,66,243,424,489,132,506,390,203,531
%N A linear mapping a(n) = x + y*n of pairs of nonnegative integers (x,y), where the pairs are enumerated first by radial coordinate r and in case of ties, by polar angle 0 <= phi <= Pi/2 in a polar coordinate system.
%C Secondary sorting by polar angle is equivalent to secondary sorting by y.
%C The sequence is an alternative solution to the riddle described in the comments of A304584.
%e y:
%e |
%e 8 | 57 61 63 66 70
%e |
%e 7 | 44 47 51 53 60 68
%e |
%e 6 | 34 36 38 42 49 55 64
%e |
%e 5 | 25 27 29 32 40 46 54 67
%e |
%e 4 | 16 18 21 24 30 39 48 59 69
%e |
%e 3 | 10 12 14 19 23 31 41 52 65
%e |
%e 2 | 5 7 8 13 20 28 37 50 62
%e |
%e 1 | 2 3 6 11 17 26 35 45 58
%e |
%e 0 | 0 1 4 9 15 22 33 43 56 71
%e _______________________________________
%e x: 0 1 2 3 4 5 6 7 8 9
%e .
%e a(5) = x(5) + 5*y(5) = 0 + 5*2 = 10,
%e a(14) = x(14) + 14*y(14) = 2 + 14*3 = 44,
%e a(20) = x(20) + 20*y(20) = 4 + 20*2 = 44.
%o (PARI) n=-1;for(r2=0,81,for(y=0,round(sqrt(r2)),x2=r2-y^2;if(issquare(x2),print1(round(sqrt(x2))+y*(n++),", "))))
%Y Cf. A000925, A283305, A283306, A304584, A304585.
%K nonn
%O 0,3
%A _Hugo Pfoertner_, Jun 15 2018