Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Aug 03 2019 12:32:19
%S 1,2,6,28,152,1008,7756,67688,659424,7123776,84154224,1079913888,
%T 14962632384,222447507072,3531920599008,59664827178048,
%U 1067975819206656,20192760528611328,402169396496004864,8414121277765679616,184498963978904644608,4231186653661629843456
%N Expansion of e.g.f. Product_{k>=1} (1 + x^k/k)/(1 - x^k/k).
%C Exponential convolution of the sequences A007838 and A007841.
%H Vaclav Kotesovec, <a href="/A305199/b305199.txt">Table of n, a(n) for n = 0..445</a>
%F E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (1 + (-1)^(k+1))*x^(j*k)/(k*j^k)).
%F a(n) ~ sqrt(Pi/2) * n^(n + 5/2) / exp(n + 2*gamma), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Mar 26 2019
%p a:=series(mul((1+x^k/k)/(1-x^k/k),k=1..100),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # _Paolo P. Lava_, Mar 26 2019
%t nmax = 21; CoefficientList[Series[Product[(1 + x^k/k)/(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
%t nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(1 + (-1)^(k + 1)) x^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
%Y Cf. A007838, A007841, A292358, A292359, A295792.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, May 27 2018