|
|
A305070
|
|
a(n) = 378*n^2 - 54*n (n>=1).
|
|
2
|
|
|
324, 1404, 3240, 5832, 9180, 13284, 18144, 23760, 30132, 37260, 45144, 53784, 63180, 73332, 84240, 95904, 108324, 121500, 135432, 150120, 165564, 181764, 198720, 216432, 234900, 254124, 274104, 294840, 316332, 338580, 361584, 385344, 409860, 435132, 461160, 487944, 515484, 543780, 572832, 602640, 633204
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is the first Zagreb index of the silicate network SL(n), defined pictorially in the Javaid et al. reference (Fig. 1, where SL(2) is shown) or in Liu et al. reference (Fig. 3, where again SL(2) is shown).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of SL(n) is M(SL(n);x,y) = 6*n*x^3*y^3 + (18*n^2 + 6*n)*x^3*y^6 + (18*n^2 - 12*n)*x^6*y^6 (n>=2).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 108*x*(3 + 4*x) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
|
|
MAPLE
|
seq(378*n^2 - 54*n, n = 1 .. 50);
|
|
MATHEMATICA
|
Table[378n^2-54n, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 324, 1404}, 50] (* Harvey P. Dale, Jan 29 2023 *)
|
|
PROG
|
(PARI) Vec(108*x*(3 + 4*x) / (1 - x)^3 + O(x^50)) \\ Colin Barker, May 26 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|