Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 May 25 2018 06:02:07
%S 0,1,2,1,3,2,3,2,2,5,4,2,4,3,3,7,3,3,3,3,2,2,6,4,7,9,4,8,2,5,3,8,7,9,
%T 9,4,3,6,5,9,10,5,5,5,8,3,5,7,5,4,6,4,2,5,8,7,14,6,4,9,8,7,3,5,6,11,6,
%U 5,13,8,8,8,8,4,8,7,14,6,7,7,8,8,8,5,3,8,6,5,9,5
%N Number of pairs {k, m} with 0 <= k <= m such that binomial(2k,k) + binomial(2m,m) is not only a primitive root modulo prime(n) but also smaller than prime(n).
%C Conjecture 1: a(n) > 0 for all n > 1. In other words, any odd prime p has a primitive root g < p which is the sum of two central binomial coefficients.
%C Conjecture 2: Each odd prime p has a primitive root g < p which is the sum of two Catalan numbers.
%C We have verified Conjecture 1 for all odd primes p < 10^9.
%H Zhi-Wei Sun, <a href="/A305030/b305030.txt">Table of n, a(n) for n = 1..50000</a>
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1405.0290">New observations on primitive roots modulo primes</a>, arXiv:1405.0290 [math.NT], 2014.
%H Zhi-Wei Sun, <a href="http://maths.nju.edu.cn/~zwsun/160p.pdf">Problems on combinatorial properties of primes</a>, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28--Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
%e a(2) = 1 with binomial(2*0,0) + binomial(2*0,0) = 2 a primitive root modulo prime(2) = 3.
%e a(3) = 2 with binomial(2*0,0) + binomial(2*0,0) = 2 and binomial(2*0,0) + binomial(2*1,1) = 3 primitive roots modulo prime(3) = 5.
%e a(4) = 1 with binomial(2*0,0) + binomial(2*1,1) = 3 a primitive root modulo prime(4) = 7.
%e a(29) = 2 with binomial(2*3,3) + binomial(2*3,3) = 40 and binomial(2*1,1) + binomial(2*4,4) = 72 primitive roots modulo prime(29) = 109.
%t p[n_]:=p[n]=Prime[n];
%t Dv[n_]:=Dv[n]=Divisors[n];
%t gp[g_,p_]:=gp[g,p]=Mod[g,p]>0&&Sum[Boole[PowerMod[g,Dv[p-1][[k]],p]==1],{k,1,Length[Dv[p-1]]-1}]==0;
%t tab={};Do[r=0;a=0;Label[aa];If[Binomial[2a,a]>=p[n],Goto[cc]];b=0;Label[bb];If[b>a||Binomial[2b,b]>=p[n]-Binomial[2a,a],a=a+1;Goto[aa]];
%t If[gp[Binomial[2a,a]+Binomial[2b,b],p[n]],r=r+1];b=b+1;Goto[bb];Label[cc];tab=Append[tab,r],{n,1,90}];Print[tab]
%Y A000040, A000108, A000984, A303540, A239957, A241476, A241504, A241516, A305048.
%K nonn
%O 1,3
%A _Zhi-Wei Sun_, May 24 2018