login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of achiral color patterns (set partitions) for a row or loop of length n using exactly 6 colors (sets).
7

%I #26 Sep 08 2022 08:46:21

%S 0,0,0,0,0,0,1,3,18,46,195,461,1696,3836,13097,28819,94094,203322,

%T 644911,1376217,4279692,9051592,27755013,58319855,176992090,370087718,

%U 1114496747,2321721493,6950406008,14437363668,43021681249,89162536011,264732674406,547676535634

%N Number of achiral color patterns (set partitions) for a row or loop of length n using exactly 6 colors (sets).

%C Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.

%H G. C. Greubel, <a href="/A304976/b304976.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,16,-16,-91,91,216,-216,-180, 180).

%F a(n) = [n==0 mod 2] * (S2(n/2+3, 6) - 3*S2(n/2+2, 6) - 8*S2(n/2+1, 6) + 16*S2(n/2, 6)) + [n==1 mod 2] * (3*S2((n+5)/2, 6) - 17*S2((n+3)/2, 6) + 20*S2((n+1)/2, 6 )) where S2(n,k) is the Stirling subset number A008277(n,k).

%F G.f.: x^6 *(1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3) / Product_{k=1..6} (1 - k*x^2).

%F a(n) = A304972(n,6).

%F a(2m-1) = A140735(m,6).

%F a(2m) = A293181(m,6).

%e For a(7) = 3, the color patterns for both rows and loops are ABCDCEF, ABCDEBF, and ABCDEFA.

%t Table[If[EvenQ[n], StirlingS2[n/2 + 3, 6] - 3 StirlingS2[n/2 + 2, 6] - 8 StirlingS2[n/2 + 1, 6] + 16 StirlingS2[n/2, 6], 3 StirlingS2[(n + 5)/2, 6] - 17 StirlingS2[(n + 3)/2, 6] + 20 StirlingS2[(n + 1)/2, 6]], {n, 0, 40}]

%t Join[{0}, LinearRecurrence[{1, 16, -16, -91, 91, 216, -216, -180, 180}, {0, 0, 0, 0, 0, 1, 3, 18, 46}, 40]] (* _Robert A. Russell_, Oct 14 2018 *)

%t CoefficientList[Series[x^6 *(1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3) / Product[1 - k*x^2, {k,1,6}], {x, 0, 50}], x] (* _Stefano Spezia_, Oct 20 2018 *)

%o (PARI) m=40; v=concat([0,0,0,0,0,1,3,18,46], vector(m-9)); for(n=10, m, v[n] = v[n-1] +16*v[n-2] -16*v[n-3] -91*v[n-4] +91*v[n-5] +216*v[n-6] -216*v[n-7] -180*v[n-8] +180*v[n-9]); concat([0], v) \\ _G. C. Greubel_, Oct 16 2018

%o (Magma) I:=[0,0,0,0,0,1,3,18,46]; [0] cat [n le 9 select I[n] else Self(n-1) +16*Self(n-2) -16*Self(n-3) -91*Self(n-4) +91*Self(n-5) +216*Self(n-6) -216*Self(n-7) -180*Self(n-8) +180*Self(n-9): n in [1..40]]; // _G. C. Greubel_, Oct 16 2018

%Y Sixth column of A304972.

%Y Sixth column of A140735 for odd n.

%Y Sixth column of A293181 for even n.

%Y Coefficients that determine the first formula and generating function are row 6 of A305008.

%K nonn,easy

%O 0,8

%A _Robert A. Russell_, May 22 2018