login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).
6

%I #10 May 21 2018 03:20:54

%S 1,0,14,64,528,1696,11616,33600,169072,525760,2069922,5928066,

%T 22259874,59321760,193797792,526647420,1566376990,4012181104,

%U 11456306798,28263784110,75995086336,184440427360,468750673616,1104027571108,2730165482640,6239956155696

%N G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).

%C In general, if m > 1 and g.f. = Sum_{k>=0} p(k)^m * x^k / Sum_{k>=0} p(k)*x^k, then a(n, m) ~ exp(Pi*sqrt(2*(m^2 - 1)*n/3)) * ((m^2 - 1)^(m - 3/4) / (2^(2*m - 3/4) * 3^(m/2 - 1/4) * m^(2*m - 1) * n^(m - 1/4))).

%H Seiichi Manyama, <a href="/A304873/b304873.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ 2^(3/4) * 3^(3/2) * 5^(13/4) * exp(Pi*sqrt(10*n)) / (2^22 * n^(15/4)).

%t nmax = 25; CoefficientList[Series[Sum[PartitionsP[k]^4*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

%Y Cf. A054440 (m=2), A260664 (m=3).

%Y Cf. A000041, A001255, A133042, A304877, A304878.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, May 20 2018